Genetic ALS:
an overview of
common mutations

SOD1: the “pioneer” genetic mutation

What we now call genetic ALS was first discovered in 1993, when Robert Brown’s research group identified 11 different SOD1 mutations in familial cases of ALS.1,2

Researchers would eventually come to understand that mutant SOD1 proteins can cause excitotoxicity in motor neurons, due to failure in clearing neurotransmitters that trigger motor activity. Over time, hyperexcitable neurons gradually become more vulnerable to motor neuron death, causing the progressive muscle atrophy, spasticity, and fatal respiratory decline seen in ALS.4,5

SOD1 mutations are the second most common mutations among patients with genetic ALS.5 Approximately 187 SOD1 variants have been described in both familial and sporadic cases of ALS to date.

Currently, up to 20% of familial cases (fALS) and 3% of sporadic cases (sALS) have been linked to SOD1 mutations, and these numbers are increasing as systematic genetic screening methods are incorporated into clinical practice.1,6,7

Infographic showing percentage of ALS cases linked to SOD1 mutation
Infographic showing percentage of ALS cases linked to SOD1 mutation

C9orf72: the most common ALS-associated mutation

First identified in 2011, C9orf72 repeat expansion mutations may not have been among the earliest to be associated with ALS, but they are by far the most common. A pathogenic hexanucleotide (G4C2) repeat expansion in the first intron of C9orf72 accounts for approximately 40% of fALS and 7% of sALS cases. The C9orf72 repeat expansion is the only mutation found in more than 2% of patients with sALS.5

TARDBP and FUS: mutations found around the world

Following C9orf72 and SOD1 mutations, the most common mutations associated with ALS are in the TARDBP and FUS genes. Mutations in these genes are found in approximately 4% of patients with fALS and 1% of patients with sALS. However, researchers have noted that more studies are needed to determine the true frequency of TARDBP mutations among individuals with sALS.5,12

New technologies, new discoveries

While researchers can’t be certain how many ALS-associated mutations remain to be identified, new technologies have accelerated the pace of discovery in recent years.11

Since 2014, new sequencing technologies—including genome-wide association studies, whole genome studies, and exome sequencing—have led to the discovery of ALS-associated mutations in 7 additional genes: MATR3, CHCHD10, TBK1, TUBA4A, NEK1, C21orf2, and CCNF.11

As with many common ALS-associated mutations, these mutations have been found in patients with fALS as well as sALS11—making clear once again that genetic ALS can affect those with or without a family history of the disease.

References: 1. Kim G, Gautier O, Tassoni-Tsuchida E, Ma XR, Gitler AD. ALS genetics: gains, losses, and implications for future therapies. Neuron. 2020;108(5):822-842. doi:10.1016/j.neuron.2020.08.02. 2. Rosen DR. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;364(6435):362. doi:10.1038/364362c0 3. Laferriere F, Polymenidou M. Advances and challenges in understanding the multifaceted pathogenesis of amyotrophic lateral sclerosis. Swiss Med Wkly. 2015;145:w14054. doi:10.4414/smw.2015.14054 4. McCann EP, Williams KL, Fifita JA, et al. The genotype-phenotype landscape of familial amyotrophic lateral sclerosis in Australia. Clin Genet. 2017;92(3):259-266. 5. Roggenbuck J, Quick A, Kolb SJ. Genetic testing and genetic counseling for amyotrophic lateral sclerosis: an update for clinicians. Genet Med. 2017;19(3):267-274. 6. Nakamura R, Sone J, Atsuta N, et al. Next-generation sequencing of 28 ALS-related genes in a Japanese ALS cohort. Neurobiol Aging. 2016;39:219.e1-219.e2198. doi:10.1016/j.neurobiolaging.2015.11.030 7. Shepheard SR, Parker MD, Cooper-Knock J, et al; on behalf of Project MINE Consortium; Project MinE. Value of systematic genetic screening of patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2021;92(5):510-518. 8. Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014;17(1):17-23. 9. Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol. 2020;27(10):1918-1929. 10. Picher-Martel V, Valdmanis PN, Gould PV, Julien JP, Dupré N. From animal models to human disease: a genetic approach for personalized medicine in ALS. Acta Neuropathol Commun. 2016;4(1):70. doi:10.1186/s40478-016-0340-5 11. Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol. 2018;17(1):94-102. doi:10.1016/S1474-4422(17)30401-5 12. Lattante S, Rouleau GA, Kabashi E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat. 2013;34(6):812-826. 13. Leko MB, Župunski V, Kirincich J, et al. Molecular mechanisms of neurodegeneration related to C9orf72 hexanucleotide repeat expansion. Behav Neurol. 2019:2909168. doi:10.1155/2019/2909168

References

1. Kim G, Gautier O, Tassoni-Tsuchida E, Ma XR, Gitler AD. ALS genetics: gains, losses, and implications for future therapies. Neuron. 2020;108(5):822-842. doi:10.1016/j.neuron.2020.08.02. 2. Rosen DR. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;364(6435):362. doi:10.1038/364362c0 3. Laferriere F, Polymenidou M. Advances and challenges in understanding the multifaceted pathogenesis of amyotrophic lateral sclerosis. Swiss Med Wkly. 2015;145:w14054. doi:10.4414/smw.2015.14054 4. McCann EP, Williams KL, Fifita JA, et al. The genotype-phenotype landscape of familial amyotrophic lateral sclerosis in Australia. Clin Genet. 2017;92(3):259-266. 5. Roggenbuck J, Quick A, Kolb SJ. Genetic testing and genetic counseling for amyotrophic lateral sclerosis: an update for clinicians. Genet Med. 2017;19(3):267-274. 6. Nakamura R, Sone J, Atsuta N, et al. Next-generation sequencing of 28 ALS-related genes in a Japanese ALS cohort. Neurobiol Aging. 2016;39:219.e1-219.e2198. doi:10.1016/j.neurobiolaging.2015.11.030 7. Shepheard SR, Parker MD, Cooper-Knock J, et al; on behalf of Project MINE Consortium; Project MinE. Value of systematic genetic screening of patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2021;92(5):510-518. 8. Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014;17(1):17-23. 9. Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol. 2020;27(10):1918-1929. 10. Picher-Martel V, Valdmanis PN, Gould PV, Julien JP, Dupré N. From animal models to human disease: a genetic approach for personalized medicine in ALS. Acta Neuropathol Commun. 2016;4(1):70. doi:10.1186/s40478-016-0340-5 11. Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol. 2018;17(1):94-102. doi:10.1016/S1474-4422(17)30401-5 12. Lattante S, Rouleau GA, Kabashi E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat. 2013;34(6):812-826. 13. Leko MB, Župunski V, Kirincich J, et al. Molecular mechanisms of neurodegeneration related to C9orf72 hexanucleotide repeat expansion. Behav Neurol. 2019:2909168. doi:10.1155/2019/2909168